Pure Mathematics 2

Exercise 5I

1 a Initial amount $=\$ 4000$
(start of month 1)
Start of month $2=\$(4000+200)$
Start of month $3=\$(4000+200+200)$

$$
=\$(4000+2 \times 200)
$$

Start of month $10=\$(4000+9 \times 200)$

$$
=\$(4000+1800)
$$

$$
=\$ 5800
$$

b Start of m th month
$=\$(4000+(m-1) \times 200)$
$=\$(4000+200 m-200)$
$=\$(3800+200 m)$

2

Nour will reach her maximum salary after $\frac{25000-20000}{500}=10$ increments
This will be after 11 years.
a Total amount after 10 years

$$
=\underbrace{20000+20500+21000+\ldots}
$$

This is an arithmetic series with $a=20000, d=500$ and $n=10$. Use

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(2 a+(n-1) d) . \\
& =\frac{10}{2}(40000+9 \times 500) \\
& =5 \times 44500 \\
& =€ 222500
\end{aligned}
$$

b From year 11 to year 15 she will continue to earn $€ 25000$.
Total in this time $=5 \times 25000$

$$
\text { = €125 } 000 .
$$

Total amount in the first 15 years is $€ 222500+€ 125000=€ 347500$
c It is unlikely her salary will rise by the same amount each year.

3 Amount saved by James

$$
=1+2+3+\ldots+42
$$

This is an arithmetic series with $a=1$, $d=1, n=42$ and $L=42$.
a Use $S_{n}=\frac{n}{2}(a+L)$

$$
\begin{aligned}
& =\frac{42}{2}(1+42) \\
& =21 \times 43 \\
& =903 \mathrm{c} \\
& =\$ 9.03
\end{aligned}
$$

b To save $\$ 100$ we need
$\underbrace{1+2+3+\ldots}_{\text {Sumtonterms }}=10000$

$$
\begin{aligned}
\frac{n}{2}(2 \times 1+(n-1) \times 1) & =10000 \\
\frac{n}{2}(n+1) & =10000 \\
n(n+1) & =20000
\end{aligned}
$$

$$
n^{2}+n-20000=0
$$

$$
n=\frac{-1 \pm \sqrt{(1)^{2}-4 \times 1 \times(-20000)}}{2}
$$

$$
n=140.9 \text { or }-141.9
$$

It takes James 141 days to save $\$ 100$.
4 A growth of 10% a year gives a multiplication factor of 1.1.
a After 1 year number is $200 \times 1.1=220$
b After 2 years number is $200 \times 1.1^{2}=242$
c After 3 years number is $200 \times 1.1^{3}=266.2=266$
(to nearest whole number)
d After 10 years number is $200 \times 1.1^{10}=518.748 \ldots=519$
(to nearest whole number)

Pure Mathematics 2

5 Let maximum speed in bottom gear be $a \mathrm{~km} \mathrm{~h}^{-1}$
This gives maximum speeds in each successive gear of $a r, a r^{2}, a r^{3}$, where r is the common ratio.
We are given

$$
\begin{equation*}
a=40 \tag{1}
\end{equation*}
$$

$a r^{3}=120$
Substitute (1) into (2):

$$
\begin{align*}
40 r^{3} & =120 \quad(\div 40) \tag{2}\\
r^{3} & =3 \\
r & =\sqrt[3]{3} \\
r & =1.442 \ldots(3 \text { d.p. })
\end{align*}
$$

Maximum speed in 2nd gear is
$a r=40 \times 1.442 \ldots=57.7 \mathrm{~km} \mathrm{~h}^{-1}$
Maximum speed in 3rd gear is

$$
a r^{2}=40 \times(1.442 \ldots)^{2}=83.2 \mathrm{~km} \mathrm{~h}^{-1}
$$

6 a $r=0.85$
$a \times 0.85^{3}=11054.25$
$a=€ 18000$
b $18000 \times 0.85^{n}>5000$

$$
\begin{aligned}
& 0.85^{n}>\frac{5}{18} \\
& n>\frac{\log \left(\frac{5}{18}\right)}{\log (0.85)} \\
& n>7.88
\end{aligned}
$$

7 a Total commission

$$
=\underbrace{10+20+30+\ldots+520}
$$

Arithmetic series with $a=10, d=10$,

$$
n=52
$$

$$
=\frac{52}{2}(2 \times 10+(52-1) \times 10) \text { using }
$$

$$
S_{n}=\frac{n}{2}(2 a+(n-1) d)
$$

$$
=26(20+51 \times 10)
$$

$$
=26(20+510)
$$

$$
=26 \times 530
$$

$$
=\$ 13780
$$

b Commission $=$ policies for year $1+$ policies for 2 nd week of year 2 $=520+22=\$ 542$
c Total commission for year 2
$=$ Commission for year 1 policies +
Commission for year 2 policies

$$
=520 \times 52+(11+22+33+\ldots 52 \times 11)
$$

Use $S_{n}=\frac{n}{2}=(2 a+(n-1) d)$
with $n=52, a=11, d=11$

$$
\begin{aligned}
& =27040+\frac{52}{2}(2 \times 11+(52-1) \times 11) \\
& =27040+26 \times(22+51 \times 11) \\
& =27040+\$ 15158 \\
& =\$ 42198
\end{aligned}
$$

8 a Cost of drilling to 500 m

There would be 10 terms because there are 10 lots of 50 m in 500 m .
Arithmetic series with $a=500, d=140$ and $n=10$

$$
\text { Using } \begin{aligned}
S_{n} & =\frac{n}{2}(2 a+(n-1) d) \\
& =\frac{10}{2}(2 \times 500+(10-1) \times 140) \\
& =5(1000+9 \times 140) \\
& =5 \times 2260 \\
& =\$ 11300
\end{aligned}
$$

INTERNATIONAL A LEVEL

Pure Mathematics 2

8 b This time we are given $S=76000$. The first term will still be 500 and d remains 140
Use $S=\frac{n}{2}(2 a+(n-1) d)$ with
$S=76000, a=500, d=140$, and solve for n.

$$
\begin{aligned}
& 76000=\frac{n}{2}(2 \times 500+(n-1) \times 140) \\
& 76000=\frac{n}{2}(1000+140(n-1)) \\
& 76000=n(500+70(n-1)) \\
& 76000=n(500+70 n-70) \\
& 76000=n(70 n+430 n)(\text { multiply out }) \\
& 76000=70 n^{2}+430 n(\div 10) \\
& 7600=7 n^{2}+43 n \\
& 0=7 n^{2}+43 n-7600 \\
& n=\frac{-43 \pm \sqrt{(43)^{2}-4 \times 7 \times(-7600)}}{2 \times 7} \\
& n=30.02,(-36.16)
\end{aligned}
$$

Only accept the positive answer, so there are 30 terms (to the nearest term).
So the greatest depth that can be drilled is $30 \times 50=1500 \mathrm{~m}$ (to the nearest 50 m).

9 a 1st year $=500$
2 nd year $=550=500+1 \times 50$
3 rd year $=600=500+2 \times 50$
40th year $=500+39 \times 50=€ 2450$
b Total amount paid in
$=€ 500+€ 550+€ 600+\ldots+€ 2450$
This is an arithmetic series with $a=500$, $d=50, L=2450$ and $n=40$.

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(a+L) \\
S_{40} & =\frac{40}{2}(500+2450) \\
& =20 \times 2950 \\
& =€ 59000
\end{aligned}
$$

c Max's amount

$$
=\underbrace{890+(890+d)+(890+2 d)+\ldots}_{40 \text { years }}
$$

Use $S_{n}=\frac{n}{2}(2 a+(n-1) d)$ with $n=40$,
$a=890$ and d.

$$
\begin{aligned}
S_{40} & =\frac{40}{2}(2 \times 890+(40-1) d) \\
& =20(1780+39 d)
\end{aligned}
$$

Use the fact that
Max's saving = Sara's savings

$$
\begin{array}{rlr}
20(1780+39 d) & =59000 \quad(\div 20) \\
1780+39 d & =2950 \quad(-1780) \\
39 d & =1170 \quad(\div 39) \\
d & =30
\end{array}
$$

10 If the number of people infected increases by 4% the multiplication factor is 1.04 .
After n days $100 \times(1.04)^{n}$ people will be infected.
If 1000 people are infected

$$
\begin{aligned}
100 \times(1.04)^{n} & =1000 \\
(1.04)^{n} & =10 \\
\log (1.04)^{n} & =\log 10 \\
n \log (1.04) & =1 \\
n & =\frac{1}{\log (1.04)} \\
n & =58.708 \ldots
\end{aligned}
$$

It would take 59 days.
11 If the increase is 3.5% per annum the multiplication factor is 1.035 .
Therefore after n years I will have $£ A \times(1.035)^{n}$.
If the money is doubled it will equal $2 A$, therefore

$$
\begin{aligned}
A \times(1.035)^{n} & =2 A \\
(1.035)^{n} & =2 \\
\log (1.035)^{n} & =\log 2 \\
n \log (1.035) & =\log 2 \\
n & =\frac{\log 2}{\log (1.035)}=20.14879 \ldots
\end{aligned}
$$

My money will double after 20.15 years.

Pure Mathematics 2

12 The reduction is 6% which gives a multiplication factor of 0.94 .
Let the number of fish now be F.
After n years there will be $F \times(0.94)^{n}$.
When their number is halved the number will be $\frac{1}{2} F$.
Set these equal to each other:

$$
\begin{aligned}
F \times(0.94)^{n} & =\frac{1}{2} F \\
(0.94)^{n} & =\frac{1}{2} \\
\log (0.94)^{n} & =\log \left(\frac{1}{2}\right) \\
n \log (0.94) & =\log \left(\frac{1}{2}\right) \\
n & =\frac{\log \left(\frac{1}{2}\right)}{\log (0.94)} \\
n & =11.2
\end{aligned}
$$

The fish stocks will halve in 11.2 years.

13

No. grains $=\underbrace{1+2+4+8+\ldots}_{64 \text { terms }}$
This is a geometric series with $a=1, r=2$ and $n=64$.

$$
\text { As }|r|>1 \text { use } S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}
$$

$$
\text { Number of grains }=\frac{1\left(2^{64}-1\right)}{2-1}=2^{64}-1
$$

14 a

After the 1st bounce it bounces to 7 cm
After the 2nd bounce it bounces to 4.9 cm ($\times 0.7$)
After the 3 rd bounce it bounces to 3.43 cm ($\times 0.7$)
After the 4th bounce it bounces to 2.401 cm ($\times 0.7$)
b Total distance travelled

$$
\begin{aligned}
& =10+7+\underset{\substack{\text { 1st } \\
\text { bounce }}}{7 \text { nd }}+\underset{\substack{\text { bounce }}}{7.9+4.9+\ldots} \begin{array}{c}
\text { 3rd } \\
\text { bounce }
\end{array} \\
& =2 \times \underbrace{(10+7+\ldots)}_{\substack{\text { terms } \\
a=10, r=0.7, n=6}}+10
\end{aligned}
$$

$$
=2 \times \frac{10\left(1-0.7^{6}\right)}{1-0.7}-10
$$

$$
=48.8234 \mathrm{~m}
$$

15a $a=10, r=1.1$
$S_{n}=\frac{10\left(1.1^{n}-1\right)}{1.1-1}=1000$
$1.1^{n}-1=10$
$1.1^{n}=11$
$n=\frac{\log 11}{\log 1.1}$
$=25.16$
So 26 days
b On the 25th day:
$a r^{24}=10 \times 1.1^{24}=98.5$ miles

Pure Mathematics 2

16 Jan. 1st, year $1=€ 500$
Dec. 31 st, year $1=500 \times 1.035$
Jan. 1st, year $2=500 \times 1.035+500$
Dec. 31st, year 2

$$
=(500 \times 1.035+500) \times 1.035
$$

$$
=500 \times 1.035^{2}+500 \times 1.035
$$

!
Dec. 31st, year n

$$
\begin{aligned}
= & 500 \\
& \times 1.035^{n}+\ldots+500 \times 1.035^{2} \\
& +500 \times 1.035 \\
= & 500 \times \underbrace{\left(1.035^{n}+\ldots+1.035^{2}+1.035\right)}
\end{aligned}
$$

A geometric series with $a=1.035$, $r=1.035$ and n.
Use $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
Dec. 31st year $n=500 \times \frac{1.035\left(1.035^{n}-1\right)}{1.035-1}$
Set this equal to $€ 20000$

$$
\begin{gathered}
20000=500 \times \frac{1.035\left(1.035^{n}-1\right)}{1.035-1} \\
\left(1.035^{n}-1\right)=\frac{20000 \times(1.035-1)}{500 \times 1.035} \\
1.035^{n}-1=1.3526570 \ldots \\
1.035^{n}=2.3526570 \ldots \\
\log \left(1.035^{n}\right)=\log 2.3526570 \ldots \\
n \log (1.035)=\log 2.3526570 \ldots \\
n=\frac{\log 2.3526570 \ldots}{\log 1.035} \\
n=24.9 \text { years }(3 \text { s.f. })
\end{gathered}
$$

It takes Liu Wei 25 years to save $€ 20000$

